Construction of Shear Wave Models by Applying Multi-Objective Optimization to Multiple Geophysical Data Sets
نویسندگان
چکیده
For this work, our main purpose is to obtain a better understanding of the Earth’s tectonic processes in the Texas region, which requires us to analyze the Earth structure. We expand on a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth’s structure of Texas with the use of multiple geophysical data sets. We employed a joint inversion scheme using multiple geophysical datasets for the sole purpose of obtaining a three-dimensional velocity structure of Texas in order to identify an ancient rift system within Texas. In particular, we use data from the USArray, which is part of the EarthScope experiment, a 15-year program to place a dense network of permanent and portable seismographs across the continental United States. Utilizing the USArray data has provided us with the ability to image the crust and upper mantle structure of Texas. We simultaneously inverted multiple datasets from USArray data, to help us to better obtain an estimate of the true Earth structure model. We prove through numerical and experimental testing that our Multi-Objective Optimization (MOP) scheme performs inversion in a more robust, and flexible matter than traditional inversion approaches.
منابع مشابه
Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran
Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...
متن کاملDeveloping 3-D shear wave models uisng a multi-objective joint inversion scheme
For this research, our main purpose is to obtain a better understanding of the Earths tectonic processes in the Texas region, which requires us to analyze the Earth structure. We expand on a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth’s structure of Texas with the use of multiple geophysical data sets. We employed...
متن کاملGeostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran
This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and in...
متن کاملPrediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf
Shear and Compressional Wave Velocities along with other Petrophysical Logs, are considered as upmost important data for Hydrocarbon reservoirs characterization. Shear Wave Velocity (Vs) in Well Logging is commonly measured by some sort of Dipole Logging Tools, which are able to acquire Shear Waves as well as Compressional Waves such as Sonic Scanner, DSI (Dipole Shear Sonic imager) by Schlumbe...
متن کاملValidation and application of empirical shear wave velocity models based on standard penetration test
Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances it may be preferable to determine Vs indirectly by common in-situ tests, such as the Standard Penetration Test. Many empirical correlations based on the Standard Penetration Test are broadly classified as regression techniques. However, no rigorous procedure has been published for c...
متن کامل